
 

 

 

 

 

 

 

 

CellSpeak 

Platform Package 
July 2017 

 

 

 

 

 

 

Cells run in parallel, 

On all cores, 

On interconnected systems, 

As one program 

  

CellSpeak 



Table of Contents 
1 Introduction .................................................................................................................................... 5 

1.1 Packages and modules ............................................................................................................ 6 

1.2 Strong and weak links ............................................................................................................. 7 

1.3 Format of the description ....................................................................................................... 8 

1.4 Overview ................................................................................................................................. 9 

2 The system .................................................................................................................................... 10 

2.1 Overview ............................................................................................................................... 11 

2.2 The Service interface ............................................................................................................. 13 

2.2.1 Service.Get→ ................................................................................................................ 13 

2.2.2 Service.Offer → ............................................................................................................. 14 

2.2.3 Service.Revoke → .......................................................................................................... 14 

2.2.4 ← Service.Provider ........................................................................................................ 14 

2.2.5 ← Service.NoProvider ................................................................................................... 14 

2.2.6 ← Service.InvalidProvider ............................................................................................. 15 

2.2.7 ← Service.Exists ............................................................................................................ 15 

2.2.8 ← Service.Added ........................................................................................................... 15 

2.2.9 ← Service.NotAdded ..................................................................................................... 15 

2.3 The Stdout and Stderr interfaces .......................................................................................... 16 

2.3.1 Stdout.Set → ................................................................................................................. 17 

2.3.2 Stdout.Get → ................................................................................................................ 17 

2.3.3 ← Stdout ....................................................................................................................... 17 

2.3.4 Stdout.Print → .............................................................................................................. 17 

2.3.5 Stdout.Println → ........................................................................................................... 18 

2.3.6 Stderr.Set → .................................................................................................................. 18 

2.3.7 Stderr.Get → ................................................................................................................. 18 

2.3.8 ← Stderr ........................................................................................................................ 18 

2.3.9 Stderr.Print → ............................................................................................................... 19 

2.3.10 Stderr.Println → ............................................................................................................ 19 

2.3.11 Print → .......................................................................................................................... 19 

2.3.12 Println → ....................................................................................................................... 19 

2.4 Memory interface ................................................................................................................. 20 

2.4.1 ByteCode interface........................................................................................................ 20 

2.5 Creator interface ................................................................................................................... 21 

3 The Connection Manager .............................................................................................................. 22 

3.1 Communicating between CellSpeak virtual machines .......................................................... 23 



3.2 Communicating using the HTTP protocol ............................................................................. 24 

3.3 Overview ............................................................................................................................... 25 

3.4 HTTP Messages ..................................................................................................................... 26 

3.4.1 Incoming HTTP messages .............................................................................................. 26 

3.4.2 Outgoing HTTP messages .............................................................................................. 26 

3.5 Using SSL ............................................................................................................................... 27 

4 Timer ............................................................................................................................................. 28 

5 Math Library .................................................................................................................................. 29 

5.1 Numerical format in CellSpeak ............................................................................................. 30 

5.2 Real valued functions ............................................................................................................ 31 

5.2.1 sin cos tan ..................................................................................................................... 32 

5.2.2 asin acos atan ................................................................................................................ 32 

5.2.3 exp ................................................................................................................................. 33 

5.2.4 log .................................................................................................................................. 33 

5.2.5 abs ................................................................................................................................. 33 

5.2.6 sqrt ................................................................................................................................ 34 

5.2.7 randf randd ................................................................................................................... 34 

5.3 Integer functions ................................................................................................................... 35 

5.4 Complex numbers ................................................................................................................. 36 

5.5 Vector operators and functions ............................................................................................ 37 

5.6 Matrices ................................................................................................................................ 40 

5.7 Rotations ............................................................................................................................... 41 

5.8 Quaternions .......................................................................................................................... 42 

6 Strings library ................................................................................................................................ 43 

6.1 Are string operations safe ? .................................................................................................. 44 

6.2 Zero terminated strings ........................................................................................................ 45 

6.2.1 zt.len .............................................................................................................................. 45 

6.2.2 zt.lenz ............................................................................................................................ 45 

6.2.3 zt.last ............................................................................................................................. 46 

6.2.4 zt.find ............................................................................................................................ 46 

6.2.5 zt.find ............................................................................................................................ 46 

6.2.6 zt.fill ............................................................................................................................... 47 

6.2.7 zt.append ...................................................................................................................... 47 

6.2.8 compare( zt, zt ) ............................................................................................................ 47 

6.3 Operators on zero-terminated strings .................................................................................. 48 

6.4 Ascii strings ........................................................................................................................... 49 



6.4.1 ascii.upper() .................................................................................................................. 49 

6.4.2 ascii.lower() ................................................................................................................... 49 

6.4.3 upper(ascii String) ......................................................................................................... 49 

6.4.4 lower(ascii String).......................................................................................................... 50 

6.4.5 ascii constants ............................................................................................................... 50 

6.5 ANSI encoding ....................................................................................................................... 52 

6.6 utf8 strings ............................................................................................................................ 53 

6.6.1 utf8.append ................................................................................................................... 53 

7 The structures library .................................................................................................................... 54 

7.1 Double Linked List ................................................................................................................. 55 

7.1.1 Structures.DoubleLinked.Record .................................................................................. 55 

7.1.2 Record.InsertAfter( out Record ) .................................................................................. 56 

7.1.3 Record.InsertBefore( out Record ) ................................................................................ 56 

7.1.4 Record.Remove ............................................................................................................. 56 

7.1.5 Structures.DoubleLinked.List ........................................................................................ 57 

7.1.6 List.Push( RecordType ) ................................................................................................. 57 

7.1.7 List.Pop() ....................................................................................................................... 57 

7.1.8 List.Remove( RecordType ) ........................................................................................... 58 

7.1.9 List.New() ...................................................................................................................... 58 

7.2 Hash Table ............................................................................................................................. 59 

7.2.1 HasTable.Add(utf8 String) out Type .............................................................................. 59 

7.2.2 HashTable.Find(utf8 String) out Type ........................................................................... 59 

8 File handling .................................................................................................................................. 61 

8.1 Overview ............................................................................................................................... 62 

9 Windows Library ........................................................................................................................... 63 

9.1 Overview ............................................................................................................................... 64 

 

 

 



1 Introduction 



1.1 Packages and modules 

A project in CellSpeak compiles to a module, and modules can be combined together in packages, 

i.e. a package can contain one or several modules. It is practical to combine related modules into a 

single package, or even to put a complete application in a single package, but the ‘unit of 

dependency’ in a CellSpeak program, is the module. Sometimes the terms package and module are 

used interchangeably, where in most cases the term module should have been used. Most of the 

time this does not lead to confusion. 

Note that modules are identified by their group name in the source code, but not every group is a 

module – a module can indeed contain many groups. 



1.2 Strong and weak links 

This manual describes the packages that are available for development in CellSpeak. 

Packages contain modules and modules contain types, functions and designs that are useful for 

many other projects. 

Modules that share types with other modules are said to have a strong link, meaning that if the 

types in these modules change, then also the modules that use these types have to be recompiled.  

Modules that only expose designs and interfaces to be used by other modules for instantiation and 

exchange of messages, are said to have weak links. When these packages change, the packages that 

use them do not have to be recompiled.  

Of course, if the interface of a design – the messages it can receive and send – changes, then the 

module that wants make use of these changes will have to be modified and recompiled. Additions or 

changes to the internal workings of weakly linked modules, have no effect on the modules that use 

these modules. 

It is clear that it is preferable to use in a project as much as possible weakly linked modules. Some 

modules however mostly contain types and functions, such as the math or string library. These 

packages are ‘standard’ packages and not expected to change often so they can be safely used by 

other packages without worrying too much about the dependency.  

Often however packages will need to export some type definitions and design definitions in order to 

make their full functionality available. In that case it can be beneficial to separate the module in two 

or more modules: one module for the type definitions and one or more modules for the designs and 

interfaces. All these modules can of course conveniently be combined into one package. 



1.3 Format of the description 

In the following chapters we describe the messages that can be received by the interfaces supported 

by the different cell types and the replies that these cells can give to these messages: 

design NameOfTheDesign( parameters ) is 

   

 interface NameOfTheInterface is 

 

  on MessageA( parameters ) do  

    

   <- ReplyA1( parameters )  

   <- ReplyA2( parameters ) 

 

  on MessageB( parameters ) do  

    

   <- ReplyB1( parameters )  

   <- ReplyB2( parameters ) 

 

  etc. 

The parameters are given as a combination of type and a name for the parameter. As we have seen, 

the name of the parameter has no significance in the selection of a message handler and is added 

here just for clarity. The developer can choose whatever name he wants for a message parameter. 



1.4 Overview 

The Platform Package contains types, functions and designs that are common to most projects. It 

offers an interface into the services provided by the OS and to the services provided by the Virtual 

Machine. 

When a Virtual Machine is launched, it will create a cell system, which is of the type SystemDesign. 

Note that system is a reserved keyword in CellSpeak. The cell system offers a number of interfaces 

and also implements an interface to offer and to obtain additional services. 

Also part of the platform package are the groups math and strings and structures. The structures 

group contains templates for commonly used containers, like a linked list or a hash table, that can be 

instantiated and extended.  

The Platform Package consists of the following designs and libraries 

• The system 

• The connection manager 

• Timer service 

• The math library 

• The strings library 

• The structures library 

• File handling library 

• Windows (OS specific services and designs) 

In the next paragraphs we take a closer look at the components of the platform package. 

A service is always offered by a cell or a group of cells, whereas a library is a collection of types and 

functions that can be re-used by the developer. 



2 The system 



2.1 Overview 

The following is an overview of the system and the interfaces it supports. For each message also the 

possible return messages are given. Note that the system cell is created automatically by the Virtual 

Machine and does not need to be created by the user. 

design SystemDesign is 

   

 interface Service is 

 

  on Get(utf8 Name) do  

    

   <- Service.Provider(utf8 Name, cell Provider)  

   <- Service.NoProvider(utf8 Name ) 

  

  on Offer(utf8 Name, cell Provider) do  

   

   <- Service.InvalidProvider(utf8 Name ) 

   <- Service.Exists(utf8 Name, cell Provider) 

   <- Service.Added(utf8 Name, cell Provider) 

   <- Service.NotAdded(utf8 Name, cell Provider) 

  

  on Revoke(utf8 ServiceName, cell ServiceProvider) 

   

 interface end 

    

 interface Stdout 

  

  on Set(cell Stdout)    

  on Get(cell Stdout)  

   

   <- Stdout(cell Stdout)  

    

  on Print(utf8 Line)     

  on Println(utf8 Line) 

   

 interface end 

   

 interface Stderr 

  

  on Set(cell Stderr)   

  on Get(cell Stderr) 

   

   <- Stderr(cell Stderr)  

    

  on Print(utf8 Line)   

  on Println(utf8 Line) 

   

 interface end 

   

 on Print(utf8 Line)   

 on Println(utf8 Line) 

 on Error(utf8 Line)  



 

 on Memory.GetStatus(cell Cell) 

  

  <- Memory.Usage(CellMemoryUsage Usage) 

 

 on ByteCode.Load( byte[] ByteCode) 

  

  <- ByteCode.Load.Ok  

  <- ByteCode.Load.Failed 

  

 on Creator.Get  

  

  <- Creator( cell Creator )  

 

  

end 



2.2 The Service interface 

The service interface allows to offer and to obtain a service from the system. The following gives an 

overview of the messages the interface supports and the replies that can be given. 

 interface Service is 

 

  on Get(utf8 Name) do  

    

   <- Service.Provider(utf8 Name, cell Provider)  

   <- Service.NoProvider(utf8 Name ) 

  

  on Offer(utf8 Name, cell Provider) do  

   

   <- Service.InvalidProvider(utf8 Name ) 

   <- Service.Exists(utf8 Name, cell Provider) 

   <- Service.Added(utf8 Name, cell Provider) 

   <- Service.NotAdded(utf8 Name, cell Provider) 

  

  on Revoke(utf8 ServiceName, cell ServiceProvider) 

   

 interface end 

A service can be obtained from the system using the Get message with the name of the service as its 

only parameter. Example 

 system <- Service.Get(“TimerService”) 

If the service is available, the system will reply by sending the message Service.Provider. The 

parameters are the again the name of the service and the cell that provides the service.  The name 

of the service is repeated in the reply so that, in case the developer has requested several services, 

he can make the link to the service requested. 

If a service is not available, the system replies with Service.NoProvider, with the name of the 

requested service as the only parameter. 

A service is offered to the system using the Offer message.  

2.2.1  Service.Get→ 

 Service.Get( utf8 Name ) 

description Request the system for a service of the given name. The system will reply by 
sending the cell that provides the service, if available 

parameters • utf8 Name:  the name of the service 

replies ← Service.Provider( utf8 Name, cell Provider ) 

← Service.NoProvider( utf8 Name ) 

remarks - 



2.2.2 Service.Offer → 

 Service.Offer( utf8 Name, cell Provider ) 

description Makes a service available to other cells. 

parameters • utf8 Name: the name of the service 

• cell Provider: the cell that provides the service 

replies ← Service.InvalidProvider(utf8 Name ) 

← Service.Exists(utf8 Name, cell Provider) 

← Service.Added(utf8 Name, cell Provider) 

← Service.NotAdded(utf8 Name, cell Provider) 

remarks A cell can offer a service that is provided by another cell, typically a child 
cell. 

2.2.3 Service.Revoke → 

 Service.Revoke( utf8 Name, cell Provider ) 

description Revokes a service that was previously made available.  

parameters • utf8 Name: the name of the service 

• cell Provider: the cell that provides the service 

replies  

remarks The cell that revokes the service must be the same that has offered the 
service. 

2.2.4 ← Service.Provider 

 Service.Provider( utf8 Name, cell Provider ) 

description Returns the cell that provides a service to the cell that requested the 
service. 

parameters • utf8 Name: the name of the service that was requested 

• cell Provider: the cell that provides the service 

remarks  

2.2.5 ← Service.NoProvider 

 Service.NoProvider( utf8 ) 

description Reply if there is no provider for the requested service 



parameters • utf8 Name: the name of the requested service 

remarks  

2.2.6 ← Service.InvalidProvider 

 Service.InvalidProvider( utf8 Name ) 

description Reply if the cell that offers the service is not valid. 

parameters • utf8 Name: the name of the requested service 

remarks  

2.2.7 ← Service.Exists 

 Service.Exists( utf8 Name, cell Provider) 

description Reply if the service offered by a cell is already available 

parameters • utf8 Name: the name of the requested service 

• cell Provider: the cell that provides the service 

remarks  

2.2.8 ← Service.Added 

 Service.Added( utf8 Name, cell Provider) 

description Reply if the service was successfully added to the list of services 

parameters • utf8 Name: the name of the requested service 

• cell Provider: the cell that provides the service 

remarks  

2.2.9 ← Service.NotAdded 

 Service.NotAdded( utf8, cell Provider ) 

description Reply if the service was not added to the list of services 

parameters • utf8 Name: the name of the requested service 

• cell Provider: the cell that provides the service 

remarks  

 



2.3 The Stdout and Stderr interfaces 

The Stdout and Stderr interfaces are used to provide a simple way of outputting messages to the 

user. 

 interface Stdout 

  

  on Set(cell Stdout)    

  on Get(cell Stdout)  

   

   <- Stdout(Stdout)  

    

  on Print(utf8 Line)     

  on Println(utf8 Line) 

   

 interface end 

   

 interface Stderr 

  

  on Set(cell Stderr)   

  on Get(cell Stderr) 

   

   <- Stderr(Stderr)  

    

  on Print(utf8 Line)   

  on Println(utf8 Line) 

   

 interface end 

   

 on Print(utf8 Line)   

 on Println(utf8 Line) 

 on Error(utf8 Line)  

The user has to provide a cell that implements two simple messages: Print and Println. The second 

message prints the output on a new line. There are actually three ways to print a line to the standard 

output: 

1. Get the Stdout cell from the system and send the Print messages directly to that cell: 

 Stdout <- Print( … ) 

2. Send a Print message to the Stdout interface of the system cell: 

 system <- Stdout.Print( … ) 

3. Send the Print message directly to the system 

 system <- Print( … ) 

In the last two cases the system will relay the message to the Stdout cell that has been set by the 

user. 

If Stdout or Stderr have not been set, the messages are silently discarded. 



2.3.1 Stdout.Set → 

  

description  

parameters  

replies  

remarks  

2.3.2 Stdout.Get → 

  

description  

parameters  

replies  

remarks  

2.3.3 ← Stdout 

  

description  

parameters  

replies  

remarks  

2.3.4 Stdout.Print → 

  

description  

parameters  

replies  

remarks  



2.3.5 Stdout.Println → 

  

description  

parameters  

replies  

remarks  

2.3.6 Stderr.Set → 

  

description  

parameters  

replies  

remarks  

2.3.7 Stderr.Get → 

  

description  

parameters  

replies  

remarks  

2.3.8 ← Stderr 

  

description  

parameters  

replies  

remarks  



2.3.9 Stderr.Print → 

  

description  

parameters  

replies  

remarks  

2.3.10 Stderr.Println → 

  

description  

parameters  

replies  

remarks  

2.3.11 Print → 

  

description  

parameters  

replies  

remarks  

2.3.12 Println → 

  

description  

parameters  

replies  

remarks  

 



2.4 Memory interface 

The memory interface has one message 

 on GetStatus( cell Cell ) 

   <- Memory.Usage( Usage ) 

The system replies with the Memory.Usage message with one parameter, a record of the type 

CellMemoryUsage: 

type CellMemoryUsage is record 

 int NrOfItems 

 int  BytesAllocated 

end  

2.4.1 ByteCode interface 

The ByteCode interface supports one message: 

 on ByteCode.Load( byte[] ByteCode) do 

 

  <- ByteCode.Load.Ok  

  <- ByteCode.Load.Failed 

 

The ByteCode parameter is an array of bytes that contains the bytecode that has to be loaded by the 

system.  Typically the bytecode in the array will have been loaded from a file, or transmitted to the 

system via the network. If the ByteCode was loaded successfully, the system replies with the 

ByteCode.Load.Ok message, if not the system sends ByteCode.Load.Failed. 



2.5 Creator interface 

Cells can be created in two ways on the system: either by using the keyword create, in which case 

the resulting cell is created as a child of the cell that created it, or by sending a creation request to 

the Creator cell. 

Cells that are created by the Creator cell are added to the root of the cell-tree. This way of creating 

cells is especially useful to instantiate an application on a system. We will see that it is also possible 

to get a reference to the creator cell of a remote system, which allows then to instantiate cells 

(applications) on that remote system. Combined with the Bytecode interface, this is a way to load 

and execute bytecode on a remote system. 

The Creator cell can be obtained from the system using the Creator.Get message 

 on Creator.Get  

  

  <- Creator( cell Creator )  

The system replies with the Creator message which has one parameter, the cell that can create other 

top-level cells (applications). 

The way to create a cell using the Creator cell is the same as using the create keyword, but the 

design and its parameters are sent as a message to the Creator: 

 Creator <- abc( p1, p2, p3 ) 

The creator cell will then create a cell of the design abc using the parameters p1 ,p2 and p3 and add 

that cell to the root of the cell-tree of the virtual machine.  

Note that 

 create abc(p1, p2, p3) 

would create exactly the same cell, but this time as a child cell of the cell who created it. 



3 The Connection Manager 

The Connection Manager – or ConxMgr in short – handles incoming and outgoing connections. 

It can be asked to connect to other systems or to listen for incoming connections using several 

communications protocols. The ConxMgr will take care of establishing the link and the buffering 

required when sending and receiving data. It will inform its clients of events, e.g. when a link gets 

disconnected. 

The connection manager can use several protocols. It can communicate between remote systems 

running CellSpeak virtual machines and exchange messages between these systems in the same 

format as if the cells on the remote machine were local.  

The ConxMgr can also exchange messages in HTTP format, for example to communicate with the 

browser or to communicate with a system using a particular RESTful API of the system. 

The ConxMgr can also encrypt all communications using SSL. 

As we will see, the ConxMgr is easy to use, much easier than in traditional programming languages, 

because the message oriented nature of CellSpeak is a natural fit for handling communications: 

asynchronous events, buffering, parallel activities – are part and parcel of the message switching 

architecture of the CellSpeak Virtual Machine. 

As can be expected, the ConxMgr is a cell. There is one ConxMgr in a running Virtual Machine and it 

is created by the system cell when the Virtual Machine is started. The ConxMgr can be obtained 

from the system as a service with the name ConxMgr as follows 

 system <- Service.Get("ConxMgr") 

The system will respond then as follows: 

 sender <- Service.Provider(“ConxMgr”, Provider) 

where Provider is the cell-id of the ConxMgr. 

In the following paragraphs, we will take a look at how two systems can setup a communication over 

TCP/IP between two systems running CellSpeak, how to setup a communication link with a browser 

and how to handle the communication with a site using a published API. 

In the following discussions, it is assumed that the reader has a basic understanding of the protocols 

used (TCP/IP, SSL, HTTP). 

Note that the ConxMgr is a cell but also a collection of objects and methods that take care of 

communications that are executed by the avatars (more about avatars later). In that respect, the 

ConxMgr is as distributed and parallel as the any other CellSpeak application. Communications 

between systems take place in parallel and the ConxMgr is not a bottleneck. 

 



3.1 Communicating between CellSpeak virtual machines 

Setting up a connection between two systems only requires a few messages: 

Caller      ConxMgr / ConxMgr   Callee 

  

  

Connect to ‘system:port’ ------->  <------- Listen on ‘port’  

Connected    <-------  -------> Accept conx on ‘port’ 

SetProtocol    ------->  <------- SetProtocol 

Protocol.Ready(callee) <-------   -------> Protocol.Ready(caller) 

  

The caller sends a connection request to the ConxMgr, specifying the name, or IP address, of the 

remote system and the port number it wants to connect to. 

On the remote system, the cell that is willing to accept incoming connections, informs its ConxMgr 

about the port number it will listen to. 

Both ConxMgrs, the one at the caller’s site and the one at the callee’s site, will then set up the 

communication between both systems. When the connection has been established, the cell that has 

initiated the connection gets a Connected message and the cell listening to the port number will get 

an Accept message. 

Both sides of the communication then have to specify the user-level protocol they want to use over 

the connection. In this example both sides would specify the CLSPK – CellSpeak – protocol. The 

connection manager would then confirm the selection to both by sending a Protocol.Ready message 

with the id of the remote cell as a parameter. From then onwards the cells can start communicating 

between themselves directly in exactly the same way as if they were local cells. 

The two cells at either side of the comms channel can for example exchange other cell-id’s to 

communicate with, and in this way many cells on one side of the channel can communicate with 

many cells at the other side. As a side remark: it is one of the tasks of the communication manager 

to translate remote cell-id’s to local cell-id’s to avoid collisions between cell-ids’. The local cell-id for 

a remote cell is often referred to as the avatar of that cell. 

If anything happens to a communication link, for example if it gets disconnected, the ConxMgr will 

inform the two cells that have set up the communication about the event. 

It is often convenient to split the responsibility for the communication set-up and the actual 

message-exchange over a connection, over different cells. This can easily be done, because the 

SetProtocol message allows to specify the cell that will handle the message exchange between the 

two systems. In this way many calls can be setup using the same port number, each time 

establishing a direct communication between different cells at either side of the link. 



3.2 Communicating using the HTTP protocol 

Setting up a communications link between two systems to use the HTTP protocol follows the same 

steps as above, apart from the last step where the SetProtocol message will specify the HTTP 

protocol iso the CLSPK protocol. 

The cell can then send HTTP messages using the familiar CellSpeak format, e.g. 

avatar <- HTTP.RESPONSE("HTTP/1.1", "200", "OK", ResponseHeaders, StyleSheet)  

The ConxMgr will translate this CellSpeak format into the appropriate HTTP format before 

transmitting it to the remote system, represented on the local system by its avatar. 

Conversely, incoming HTTP messages from the remote system will be formatted transparently into 

the familiar CellSpeak format, e.g.: 

on GET(ansi URI, ansi Version, Header[] Headers, byte[] Content) do 

 … 

end 

where the different components of the HTPP message are split into a message name (GET) and 

several other data structures. 

The use of SSL – Securce Sockets Layer – is completely transparent to the CellSpeak program – it has 

only to be mentioned once at the setup of the communication. The ConxMgr will take care of the 

encryption/decryption of the communication between the two systems. 



3.3 Overview 

design ConxManagerDesign( cell owner ) is  

 

 interface TCPIP is 

  

  on Connect(byte[] Host, byte[] Port)  

   

   <- Connected( ConxClass Conx ) 

    

  on Close(cell Avatar)   

  on Listen(byte[] Port)  

   

   <- Accept( ConxClass Conx ) 

    

  on Stop.Listening(byte[] Port)   

  on SSL.Connect(byte[] Host, byte[] Port)   

  on SSL.Listen(byte[] Port) 

   

  -- message sent when disconnected by the remote party 

   

   <-TCPIP.RemoteDisconnected( ConxClass Conx ) 

 

 interface end 

  

 on Set.Protocol( ConxClass Conx, ansi Protocol, cell Handler) 

  

   <- "[Protocol].Ready"(cell Avatar) 

   <- "[Protocol].NotSupported" 

    

  

 on Change.Handler( ConxClass Conx, cell NewHandler) 

  

    <- Change.Handler.Ok  

    <- Change.Handler.Failed 

 

The ConxClass is an opaque reference to the connection that is used by the ConxMgr to identify the 

link. 



3.4 HTTP Messages 

In order to handle HTTP messages in a CellSpeak application, the ConxMgr formats incoming HTTP 

messages into a CellSpeak format and formats outgoing CellSpeak messages into an HTTP format. 

3.4.1 Incoming HTTP messages 

When an HTTP message is received, the corresponding CellSpeak message gets the name of the 

HTTP message. The content of the HTTP message is packed into four parameters: 

 

interface HTTP is 

   

 on GET(ansi URI, ansi Version, Header[] Headers, byte[] Content) 

 

• URI : The universal resource identifier 

• Version : the version of the HTTP protocol in string format, e.g. "HTTP/1.1" 

• Headers : an array of name, value pairs, both as strings. Example: 

 

ResponseHeaders = [ [ "Date", HTTPDate()],  

   [ "Content-Type", "text/html" ],  

   [ "Content-Length", "[MyMessage.len()]" ]  ] 

 

• Content : a byte array that carries the payload of the message 

3.4.2 Outgoing HTTP messages 

Outgoing HTTP messages are constructed in the same way as incoming messages. The name of the 

message is the HTTP name of the message with the headers and content added as parameters. 

Example: 

ResponseHeaders = [ [ "Date", HTTPDate()],  

   [ "Content-Type", "text/html" ],  

   [ "Content-Length", "[nel HomePage]" ]  ]   

 

 

sender <- HTTP.RESPONSE("HTTP/1.1", "200", "OK", ResponseHeaders, HomePage)  

The message above is a response message. The first three parameters are the version, the HTTP 

code indicating success or failure and a textual message corresponding to the code. The next 

parameters are the headers as name, value pairs and finally the payload of the message, in this case 

called Homepage, and presumably a byte array of HTML code. 



3.5 Using SSL 

The use of the Secure Socket Layer only makes a difference when the connection between two 

systems has to be established: instead of Connect and Listen, the messages SSL.Connect and 

SSL.Listen are used. Once the connection is established, exchange of messages is as in the non-

secure case. 

CellSpeak uses the well-known OpenSSL toolkit for the implementation of the secure 

communication. 



4 Timer 

The timer is a service made available by the Virtual Machine at startup. It has a simple and intuitive 

interface. 

The timer service can be obtained from the system using the Service interface: 

 system <- Service.Get(“Timer”) 

The system will then respond with 

 <- Service.Set(“Timer”, TimerCell) 

where TimerCell is the cell that implements the timer functions. 

The timer has two interfaces, Subscribe and Unsubscribe, as shown below: 

design TimerDesign is 

 

 interface Subscribe is 

   

  on Interval( word Interval, utf8 ReturnMessage ) do    

  on Relative( word TimeDelta , utf8 ReturnMessage )  do    

  on Absolute( word Time, utf8 ReturnMessage ) do  

  

 interface end 

 

 interface Unsubscribe is 

   

  on Interval( word Interval, utf8 ReturnMessage ) do    

  on Relative( word TimeDelta , utf8 ReturnMessage )  do    

  on Absolute( word Time, utf8 ReturnMessage ) do  

  

 interface end 

A cell can request for three sorts of timer events : Interval, Relative and Absolute. Each request has 

two parameters: the time in milliseconds and the name of the message to receive when the timer 

expires.  

A Relative and an Absolute timer will fire only once, whereas an interval timer will fire after each 

interval. 

In the following example the timer is requested to send a message FrameTick every 40 ms: 

 TimerCell <- Subscribe.Interval( 40w, “FrameTick” ) 

The cell will have provide a handler for the message from the timer with the following signature 

 on FrameTick( word Time ) do … 

The parameter Time is the time in msec since the Timer started. 



5 Math Library 

The math library provides functions, operators, constants and datatypes for math applications.  

There is no service or cell associated with math, so the math library is a pure library. 

The functions and types in the math library are grouped as follows: 

• Real valued functions 

• Integer functions 

• Complex numbers 

• Vector functions for vectors of 2, 3 or 4 components 

• Matrix functions for 2x2, 3x3 and 4x4 matrices 

• Rotations 

• Quaternion functions 

The math library is written for performance. Most of the simple functions, like the sine, cosine or 

exponential function, will result in the in-lining of a single CellSpeak bytecode instruction and that 

instruction will – where available - be compiled to the native instruction of the processor the 

program is run on. 



5.1 Numerical format in CellSpeak 

CellSpeak supports integers, unsigned integers or words of several lengths, floats and doubles. When 

using a constant in a program it is sometimes clear what the type of that constant is, but sometimes 

it is not clear. 

For example in 

 float x = 1 

it is clear that the real number 1 is intended here. But for example in a function call: 

 sin(2) 

it is not clear whether the parameter should be interpreted as a float or as a double value. 

There are two ways to solve this. The first way is to explicitly cast the value to the desired type: 

 sin( <double> 2 ) 

This is a perfectly acceptable, but sometimes a bit heavy on notation. Therefore CellSpeak allows to 

use ‘hints’ in the numerical value themselves to determine the type of the constant. The following 

table gives an overview of these hints: 

CONSTANTS  

decimal integer 7 

1_256_789_365 :  Underscores can be used to improve readability 

word 556w : w signals that the constant is a word – unsigned int. 

hex integer 0xff00a9 or 0xFF00A9  : Starts with 0x and can contain a-f and A-F 

hex byte 0xff : like a hex integer but with only two positions 

hex byte as char 0x’a’ =  0x61 , 0x’:’ = 0x3A etc. 

float 3.1415 

3.1415568957e 

6.626069e–34 : exponentiel notation 

hex float 0x.7f45ad84 the 0x is followed by a decimal point and 8 hex characters 

double 3.1415926535897932d 

6.626069d–34 : exponentiel notation 

hex double 0x.01457a4f55de23a6 the 0x is followed by a decimal point and 16 hex 

characters 

 

The example above can then be written as follows: 

 sin(2d) 



5.2 Real valued functions 

Real valued functions operate on parameters of the type float or double. The following is an 

overview of the real valued functions in the math library: 

group Math 

 

-- some numerical constants 

 

const double pi  = <double> 3.141592653589793238 -- Circle 

const float  pi_f  = <float> pi   

const double e   = <double> 2.718281828459045235 -- Euler's constant 

const float  e_f  = <float> e 

const double phi  = <double> 1.618033988749894848 -- Golden ratio  

const float  phi_f  = <float> phi 

const float  inf_f = 0x.7f800000    -- float infinity (ieee 754) 

const double inf_d = 0x.7ff8000000000000  -- double infinity (ieee 754) 

 

-- Trigonometry for float 

 

function sin(float angle) out float  

function cos(float angle) out float   

function tan(float angle) out float   

function asin(float sine) out float  

function acos(float cosine) out float   

function atan(float sine, float cosine) out float   

 

-- Exponential, log etc for float 

 

function exp(float x) out float   

function log(float x) out float   

function abs(float x) out float   

function sqrt(float x) out float   

function randf out float     -- random float between 0 and 1 

 

-- Trigonometry for double 

 

function sin(double angle) out double  

function cos(double angle) out double   

function tan(double angle) out double   

function asin(double sine) out double  

function acos(double cosine) out double   

function atan(double sine, double cosine) out double   

 

-- Exponential, log etc for double 

 

function exp(double x) out double   

function log(double x) out double   

function abs(double x) out double   

function sqrt(double x) out double   

function randd out double    -- random double between 0 and 1 



5.2.1 sin cos tan 

 sin( float angle ) cos( float angle ) tan ( float angle ) 

description calculates the sine, cosine or tangent of an angle given in radians. 

input • float angle: the angle in radians for which the function has to be 
calculated. 

output float: the value of the function 

remarks - 

example  

 

The same functions also exist for a double precision argument. In that case also the result is a double 

precision value: 

 sin( double angle ) cos( double angle ) tan ( double angle ) 

description calculates the sine, cosine or tangent of an angle given in radians. 

input • double angle: the angle in radians for which the function has to be 
calculated. 

output double: the value of the function 

remarks - 

example  

5.2.2 asin acos atan 

 asin( float sine ) acos( float cosine ) atan ( float sine, float cosine ) 

description calculates the angle that corresponds with the values of the sine, cosine or 
both. 

input • float sine: a value between -1 and +1, included. 

• float cosine: a value between -1 and +1, included. 

output float: the angle in radians that corresponds with the values of the sine and 
cosine. 

remarks The angle is between 0 and π for acos and between π/2 and -π/2 for asin. 

example  

 



The same functions also exist for a double precision argument. In that case also the result is a double 

precision value: 

 asin( double sine ) acos( double cosine ) atan ( double sine, double cosine ) 

description  

input • float sine: a value between -1 and +1, included. 

• float cosine: a value between -1 and +1, included. 

output double: the angle in radians that corresponds with the values of the sine 
and cosine. 

remarks The angle is between 0 and π for acos and between π/2 and -π/2 for asin. 

example  

5.2.3 exp 

  

description  

input •  

output  

remarks  

example  

5.2.4 log 

  

description  

input •  

output  

remarks  

example  

5.2.5 abs 

  

description  



input •  

output  

remarks  

example  

5.2.6 sqrt 

  

description  

input •  

output  

remarks  

example  

5.2.7 randf randd 

  

description  

input •  

output  

remarks  

example  

 



5.3 Integer functions 

function inc(int i) out int is  

function dec(int i) out int is  

function randi out int is    -- random int between -2^31 and 2^31-1 

function inc(word w) out word is  

function dec(word w) out word is 



5.4 Complex numbers 

Complex numbers in the math library are derived from the built-in CellSpeak vector type vec2f: 

-- the two field names are renamed to the familiar r(eal) and i(maginary) 

type complex_f is vec2f with 

 rename c1 to r 

 rename c2 to i 

end 

 

-- complex is a synonym for complex_f 

type complex is complex_f 

Complex numbers can be added and subtracted like vectors which are built-in operations, but the 

multiplication operator for complex numbers is redefined to have the expected effect for complex 

numbers: 

complex a, b 

 

-- complex multiplaction: c.r = a.r*b.r – a.i*b.i, c.i = a.i*b.r + a.r*b.i 

 

c = a*b  

The corresponding type for complex numbers with double precision is also defined, this time derived 

from the built-in vec2d type: 

-- the two field names are renamed to the familiar r(eal) and i(maginary) 

type complex_d is vec2d with 

 rename c1 to r 

 rename c2 to i 

end 

as is the complex multiplication. 



5.5 Vector operators and functions 

Vector types with 2, 3 or 4 components of type float or double, are built-in types in CellSpeak. These 

built-in types are used as the basis for the definition of vector types (and also for quaternions as we 

will see later). 

The type names chosen for vectors are xy, xyz and xyzw. For vectors of the type double _d has to be 

added.  

For every vector type a few methods are defined: norm, normalize and length.  The norm returns the 

normalized vector,  normalize actually normalizes the vector and length returns a scalar, the length 

of the vector.  

For the type xyz and xyz_d, the functions norm and length are also available as stand-alone 

functions, i.e. not as methods. 

-. xy .- 

 

type xy_f is vec2f with 

 

 rename c1 to x 

 rename c2 to y  

 

 function length out float  

 function norm out xy_f  

 function normalize  

 

end 

 

type xy is xy_f    -- define xy as synonym for xy_f 

 

type xy_d is vec2d with 

 

 rename c1 to x 

 rename c2 to y  

  

 function length out double  

 function norm out xy_d  

 function normalize  

 

end 

 

-. xyz .-   

 

type xyz_f is vec3f with 

 

 rename c1 to x 

 rename c2 to y  

 rename c3 to z  

  

 function length out float  

 function norm out xyz_f  

 function normalize  

 



end 

 

type xyz is xyz_f    -- define xyz as synonym for xyz_f 

 

function norm(xyz v) out xyz  

function length(xyz v) out float  

 

type xyz_d is  vec3d with 

 

 rename c1 to x 

 rename c2 to y  

 rename c3 to z  

  

 function length out double  

 function norm out xyz_d  

 function normalize  

 

end 

 

function norm(xyz_d v) out xyz_d  

function length(xyz_d v) out double  

 

-. xyzw .- 

 

type xyzw_f is  vec4f with 

 

 rename c1 to x 

 rename c2 to y  

 rename c3 to z  

 rename c4 to w 

  

 function length out float  

 function norm out xyzw_f  

 function normalize  

end 

 

type xyzw is xyzw_f    -- define xyzw as synonym for xyzw_f 

 

type xyzw_d is vec4d with 

 

 rename c1 to x 

 rename c2 to y  

 rename c3 to z  

 rename c4 to w 

  

 function length out double  

 function norm out xyzw_d  

 function normalize  

 

end 

As these vector types are derived from the built-in CellSpeak vector types, the standard operators 

for vectors can also be used on these types: addition, subtraction, scalar multiplication and division, 



dot multiplication and cross multiplication. Also the multiplication with matrices are inherited from 

the built-in types. 



5.6 Matrices 

The matrices in the math library are derived from the built-in matrix types of CellSpeak. The built-in 

matrix types are square matrices of sizes 2x2, 3x3 and 4x4 with elements of type float and double. 

The components of a matrix can be accessed as c11 to c44. 

Matrices can be added, subtracted, multiplied by a scalar and multiplied by another square matrix of 

the same rank. 

The following lists the additional definitions in the math lib for the 3x3 matrices, both for matrices of 

floats and for matrices of doubles. The same definitions are also available for 2x2 and 4x4 matrices. 

First the name of the type is redefined to matrix3 iso of mtx3f with three methods added. The 

transpose and inverse methods are also defined as functions that do not alter the matrix parameter. 

Finally the identity matrix for both types are given as constants. 

 

-. matrix 3x3 .- 

        

type matrix3_f is mtx3f with 

 

 function det out float  

 function inverse 

 function transpose 

end 

 

function inverse( matrix3_f m) out matrix3_f  

function transpose( matrix3_f m) out matrix3_f is 

 

type matrix3 is matrix3_f 

 

type matrix3_d is mtx3d with 

 

 function det out double  

 function inverse out mtx3d 

 function transpose 

end 

 

function inverse( matrix3_d m) out matrix3_f  

function transpose( matrix3_d m) out matrix3_d 

 

const matrix3_f I3X3 = [ 1,0,0, 

    0,1,0, 

    0,0,1  ] 

       

const matrix3_d I3X3_d = [ 1,0,0, 

    0,1,0, 

    0,0,1  ] 

For the other matrix types, the 3x3 types in the definitions above have to be replaced by the 

equivalent 2x2 and 4x4 types. 



5.7 Rotations 

Matrices are often used in graphics applications to implement transformations like translations and 

rotations. Because of that the math lib also defines a number of functions to calculate some 

commonly used rotation matrices. 

These rotation function have their own group, Math.Rotate 

group Math.Rotate 

 

function X(float angle) out matrix3 

function Y(float angle) out matrix3 

function Z(float angle) out matrix3 

function Axis(xyz u, float angle) out matrix3 

 

end 

The first three functions return a 3x3 matrix for the rotation over a given angle around one of the 

main axes. The last function calculates the rotation matrix for a rotation around a random axis over a 

given angle, using the well-known Rodrigues rotation formula. 

A 3x3 matrix can be casted to a 4x4 matrix. In that case a row and a column is added to the three by 

three matrix, with all elements set to zero, except the diagonal element c44, which is set to 1. 

matrix3 M3 = [ a, b, c, 

   d, e, f, 

   g, h, i ] 

    

matrix4 M4 = <matrix4>M3 

 

M4 is then  [ a, b, c, 0, 

   d, e, f, 0, 

   g, h, i, 0, 

   0, 0, 0, 1 ] 

   



5.8 Quaternions 

Quaternions are vectors with four components, floats or doubles, that have some specific operations 

defined for them. Applications of quaternions include computer graphics where they are often used 

to implement rotations. 

The quaternion is derived from the built-in vector type vec4f for float components and vec4d for 

double components. Below we give the definitions in the math lib for the float quaternion. The same 

defintions exist also for the double quaternion, quat_d. 

In the literature the components of the quaternion are often referred to as a,b,c and d, therefore we 

rename the vec4f components also in the definition. The type name quaternion is also introduced as 

an alternative for quat_f. 

type quat_f is vec4f with 

 

 rename c1 to a 

 rename c2 to b  

 rename c3 to c  

 rename c4 to d 

  

 function power(float exponent) out quat_f  

 function conjugate out quat_f  

 function norm_squared out float  

 function inverse out quat_f  

  

end 

 

-- some specific quaternion operations are part of the CellSpeak bytecode 

 

operator *(quat_f Q, quat_f P) out quat_f 

operator *(quat_f Q, xyzw_f V) out xyzw_f 

 

-- We use quat and quaternion as an alternative for the float version 

 

type quaternion is quat_f 

type quat is quat_f 

There are two multiplication operators defined for quaternions: the first one is to multiply two 

quaternions resulting in another quaternion, and the second is to multiply a quaternion and a 4-

vector (xyzw), resulting in another vector. 

 



6 Strings library 

The built-in type from which all string types are derived in CellSpeak is the array of bytes or byte[]. 

The type zero terminated or zt  in short, is an array of bytes where the end of the content is 

indicated by a zero byte. Irrespective of the encoding of the characters in the array this allows to 

define certain functions such as length or append. 

Three other types are derived from the zt type, based on the encoding of the characters: 

• ascii: each character is represented by a seven-bit ascii code 

• ansi: each character is represented by an eight-bit code whereby the lower codes 0-127 

correspond to the ascii codes and the higher codes correspond to a particular interpretation 

determined by the OS or convention. On Windows systems for example, higher values (128-

255) usually refer to the Windows code page CP-1252 

• utf8: this is an encoding of Unicode code points into an encoding that is compatible with the 

ascii code. However characters are not limited to single byte. To represent all Unicode code 

points, a utf8 encoded code point can take up to 4 bytes. utf8 is currently by far the most 

popular character encoding.  

Because strings are arrays of bytes, all functions, operators and directives that are available for 

arrays of bytes are available for strings, most notably the sel, nel and  lel operators. Note however 

that these operators only know about the size of the array and not the length of the string: 

 utf8 Name[40] 

 Name = “Zweig” 

 int a = nel Name -- a is 40 

 int b = Name.Lenght() -- b is 5 



6.1 Are string operations safe ? 

 



6.2 Zero terminated strings 

As already mentioned, all string types are derived from the zero terminated or zt type. The zt type is 

not often used itself, but rather through its derived types like ascii, ansi and utf8. 

The zt type is a defined as an array of bytes where a zero byte indicates the end of the content of the 

array. As for all arrays, the bytes in the string are indexed by an integer starting at 0. 

The following methods are defined on the type: 

group Strings 

 

const failed = -1 

 

type zt is byte[] with 

 

 function len out int 

 function lenz out int 

 function last out int 

 function find(byte b) out int 

 function find(zt s) out int 

 function fill(byte x) 

 function append(zt String) out zt 

  

end 

 

function compare(zt a, zt b) out int  

When a method can fail it returns failed, i.e. the integer value -1. 

6.2.1 zt.len 

 zt.len() 

description returns the length of a string. 

input - 

output int  

remarks - 

example q.len() where q is “abc” returns 3 

6.2.2 zt.lenz 

 zt.lenz() 

description returns the length of a string including the terminating 0 

input - 



output int  

remarks This function can be used to allocate strings of the same length of an 
existing string: sel A[ B.lenz() ] 

example q.lenz() where q is “abc” returns 4 

6.2.3 zt.last 

 zt.last() 

description returns the position of the last non-zero byte in a string 

input - 

output int  

remarks - 

example q.last() where q is “abc” returns 2 

6.2.4 zt.find 

 zt.find( byte B ) 

description returns the first location of the byte in the string 

input the byte to locate 

output the position of the byte, failed if not found 

remarks  

example q.find( 0x’b’) where q is ”abc” returns 1 

6.2.5 zt.find 

 zt.find( zt String ) 

description returns the position of the first occurrence of the substring 

input zt String: the substring to find 

output position of the first character of the substring, failed if not found 

remarks  

example q.find(“bc”) where q is “abc” returns 1 



6.2.6 zt.fill 

 zt.fill( byte B ) 

description fills the string with the byte, the last byte is set to 0 

input byte B: the byte to fill the string with 

output - 

remarks - 

example q.fill( 0x’a’ ) where q is an array of 5 bytes results in the string “aaaa”. The 
fifth byte is set to 0. 

6.2.7 zt.append 

 zt.append( zt String ) 

description appends a string 

input zt String:  the string to append 

output the complete string is returned so the function can be used in expressions. 

remarks if the string to which the function is applied is not big enough to contain the 
complete string, the string will be re-allocated. 

example q.append(“def”) where a is “abc” results in q being set to “abcdef” 

6.2.8 compare( zt, zt ) 

 compare( zt S1, zt S2 ) 

description compares two strings 

input the two strings to be compared 

output int – 0 when the two strings are equal and a-b when the two strings are 
different, where a and b are the first characters in respectively the first and 
the second string where the strings differ. 

remarks compare is equivalent to strcmp in c. 

Note that this function is redefined for utf8 encoded strings, because in this 
form it does not produce valid results. 

example compare( “atom”, “atoll” ) returns 1 because m – l = ascii = 1 



6.3 Operators on zero-terminated strings 

Instead of using functions, zt strings can be compared using the familiar comparison operators: 

 == or is  

 != or is not  

 > 

 >= 

 < 

 <= 

The result of each comparison is a Boolean value, true or false. The comparison is done as explained 

for the compare function. 

Two strings can also be appended using the + operator: 

 zt a, b 

 a = “this is” 

 b = “ the total string” 

 

 a = a + b 

 

 results in a becoming “this is the total string” 



6.4 Ascii strings 

Ascii strings are zero terminated strings for which the 

 

type ascii is zt with -- ascii inherits from zero-terminated 

 

 function upper 

 function lower 

  

end 

 

-- We also define functions that do not alter the input string 

function upper(ascii String) out ascii 

function lower(ascii String) out ascii 

6.4.1 ascii.upper() 

 ascii.upper() 

description converts an ascii string to all uppercase characters 

input - 

output - 

remarks - 

example q.upper() where q is “aBc” results in q being set to “ABC” 

6.4.2 ascii.lower() 

 ascii.lower() 

description converts an ascii string to all lowercase characters 

input - 

output - 

remarks - 

example q.lower() where q is “aBc” results in q being set to “abc” 

6.4.3 upper(ascii String) 

 upper( ascii String ) 

description converts an ascii string to all uppercase characters 



input the ascii string to convert 

output the converted ascii string 

remarks - 

example upper(q) where a is “abc” results in q being set to “ABC” 

6.4.4 lower(ascii String) 

 lower( ascii String ) 

description converts an ascii string to all uppercase characters 

input the ascii string to convert 

output the converted ascii string 

remarks - 

example upper(q) where a is “abc” results in q being set to “ABC” 

 

6.4.5 ascii constants 

The ascii characters up to 0x20 (space) are also known by their code-name (ACK, CR, LF etc) in order 

to be able to refer to the ascii-characters using their code name, the ascii characters are also defined 

as constants in the group ASCII. There are also constants defined for the non-alphanumerical ascii 

codes. 

-. 

We define a group ASCII to give names to ascii bytes. 

It can make code more readable that deals with ascii. 

  

There is no char type in CellSpeak - because a char type only has meaning 

in the context of encoding. There is a byte type. Byte constants can be  

given names - as below - or can be written as 0x00 (two hex digits). 

Byte constants can also be written as 0x'n' where n is any printable ascii 

character, eg 0x'a' or 0x' ' or 0x'?' etc. 

.- 

group ASCII 

 

const byte NUL    = 0x00 -- Null char 

const byte SOH    = 0x01 -- Start of Heading 

const byte STX  = 0x02 -- Start of Text 

const byte ETX  = 0x03 -- End of Text 

const byte EOT  = 0x04 -- End of Transmission 

const byte ENQ  = 0x05 -- Enquiry 

const byte ACK  = 0x06 -- Acknowledgment 

const byte BEL  = 0x07 -- Bell 

const byte BS   = 0x08 -- Back Space 

const byte HT   = 0x09 -- Horizontal Tab 



const byte LF   = 0x0a -- Line Feed 

const byte VT   = 0x0b -- Vertical Tab 

const byte FF   = 0x0c -- Form Feed 

const byte CR   = 0x0d -- Carriage Return 

const byte SO   = 0x0e -- Shift Out / X-On 

const byte SI   = 0x0f -- Shift In / X-Off 

const byte DLE  = 0x10 -- Data Line Escape 

const byte DC1  = 0x11 -- Device Control 1 (oft. XON) 

const byte DC2  = 0x12 -- Device Control 2 

const byte DC3  = 0x13 -- Device Control 3 (oft. XOFF) 

const byte DC4  = 0x14 -- Device Control 4 

const byte NAK  = 0x15 -- Negative Acknowledgement 

const byte SYN  = 0x16 -- Synchronous Idle 

const byte ETB  = 0x17 -- End of Transmit Block 

const byte CAN  = 0x18 -- Cancel 

const byte EM   = 0x19 -- End of Medium 

const byte SUB  = 0x1a -- Substitute 

const byte ESC  = 0x1b -- Escape 

const byte FS   = 0x1c -- File Separator 

const byte GS   = 0x1d -- Group Separator 

const byte RS   = 0x1e -- Record Separator 

const byte US   = 0x1f -- Unit Separator 

 

const byte Space   = 0x20 

const byte Exclamation  = 0x21 

const byte DoubleQuote = 0x22 

const byte Hash   = 0x23 

const byte Dollar   = 0x24 

const byte Percent  = 0x25 

const byte Ampersand = 0x26 

const byte SingleQuote = 0x27 

const byte RoundOpen = 0x28 

const byte RoundClose = 0x29 

const byte Star  = 0x2a 

const byte Plus  = 0x2b 

const byte Comma  = 0x2c 

const byte Hyphen  = 0x2d 

const byte Period  = 0x2e 

const byte Slash   = 0x2f 

 

const byte Colon  = 0x3a 

const byte SemiColon  = 0x3b 

const byte LessThen  = 0x3c 

const byte Equals   = 0x3d 

const byte BiggerThen = 0x3e 

const byte QuestionMark  = 0x3f 

const byte At   = 0x40 

 



6.5 ANSI encoding 

Ansi encoding is compatible with ascii encoding – all ascii encoded strings are ansi encoded. The ansi 

encoding is a name used for an encoding format used on windows systems where the codes from 

128 to 255 map onto an additional set of mostly accented characters (windows cp-1252).  

There are no specific functions for ansi encode strings. 



6.6 utf8 strings 

UTF-8 encoding is compatible with ascii encoding , ie all ascii encoded strings are utf8 encoded. 

UTF-8 encoding is a variable length encoding for Unicode code points. A Unicode code point can be 

encoded in one, two, three or four bytes. So in utf8 a single byte does not necessarily correspond to 

a single character representation. A Unicode code point is identified by a 32-bit value. 

6.6.1 utf8.append 

 utf8.append( uncode CodePoint ) 

description appends a code point to a utf8 string 

input Unicode CodePoint:  the code point to append 

output - 

remarks Unicode code points are limited to 21 bits. An invalid code point will be 
converted to the following three bytes: EFBFBD – the utf8 encoding for the 
replacement character. 

example utf8 Greek = "Greek alphabet: " 
for i=0 to 24 do 
 Greek.append(0x000003b1 + i) 
end 

results in Greek = “Greek alphabet: αβγδεζηθικλμνξοπρςστυφχψω” 

 



7 The structures library 

A programming language offers a basic set of types and operations to build higher level constructs. 

Very often we find that across many types of applications, we are re-using the same types of 

constructs over and over again, examples are hash-tables, linked lists etc. Despite the fact that these 

constructs are recurring design patterns, it would be unpractical to add these constructs as built-in 

types of the language, because they are relatively complex types, and there is often a need for 

specific functions, operators and methods that require a great deal of flexibility in the definition of 

the construct. 

The combination of inheritance and templates in CellSpeak, allows to build flexible re-usable 

constructs that are applicable in many situations. The structures library defines a number of these 

base-types and templates, that can be used to derive the specific types for a given application, or 

that can be used as starting points to build new types and templates for a particular type. 

The structures are part of the group Structures. Often a specific structure also has its own group, like 

the double linked lists : Structures.DoubleLinked. 



7.1 Double Linked List 

Each element in a double linked list, except the first and the last, is linked to the element before and 

the element after itself. 

The linked list in the structures library consists of two parts: a simple record definition that contains 

the two pointers previous and next and some simple functions to add and remove an element, and a 

linked list template, based on the record definition – or any type derived from it – that offers some 

additional functionality. 

In many cases deriving a record from the base record with the pointers is all that is needed to have 

the basics of a linked list – additional functions can then be added to manipulate the list, e.g. to find 

elements in the list based on the values of the fields in the derived record etc. 

But because some of these actions are also common, the library also contains a template for the 

linked list consisting of the head of the linked list and some basic functions like Push and Pop. 

In the following example we derive a record from the double linked record and add some fields and 

methods: 

type TimerRequest is Structures.DoubleLinked.Record with 

 

 cell   Requestor 

 word32  Interval 

 utf8   Message 

 function Find(cell CellId) out TimerRequest is  

 end  

  

end 

If we want to use the functionality offered by the linked list template for this type we can then 

instantiate the template with this type: 

use template Structures.DoubleLinked.List for BaseTimerList, TimerRequest 

The first parameter is the name of the linked list, and the second parameter is the type that is used 

in the linked list. 

Often we will want to add some additional functions to the type(s) that were created by instantiating 

the templet. This can be done in the usual way: 

type TimerList is BaseTimerList with 

 

 … additional methods and fields here 

 

end 

The template can also be used of course as a basis to build a new template more suited to the types 

or style of the application being build. 

7.1.1 Structures.DoubleLinked.Record 

 



The base record of a double linked list is defined in the group Structures.DoubleLinked as follows: 

type Record is record  

  

 Record.ptr Previous 

 Record.ptr Next 

 

 function InsertAfter( out Record R) 

 function InsertBefore( out Record R) 

 function Remove  

  

end 

7.1.2 Record.InsertAfter( out Record ) 

description inserts this record after the parameter record  

input Record: the record after which this record has to be inserted. 

output - 

remarks The parameter has to be an out parameter, because the Next/Previous 
fields of the record can be changed. 

example GreenRecord.InsertAfter( BlueRecord ) : the GreenRecord will be inserted 
after  the BlueRecord. 

 

7.1.3 Record.InsertBefore( out Record ) 

description inserts this record after the parameter record  

input Record: the record before which this record has to be inserted. 

output - 

remarks The parameter has to be an out parameter, because the Next/Previous 
fields of the record can be changed. 

example GreenRecord.InsertBefore( BlueRecord ) : the GreenRecord will be inserted 
before  the BlueRecord. 

7.1.4 Record.Remove 

description removes the record from the linked list  

input - 

output - 

remarks The record is not deleted, only removed from the linked list. Works also if 
one or both of the Next/Previous pointers is null. 



example GreenRecord.Remove() – the record will be removed from the linked list is 
is in.  

7.1.5 Structures.DoubleLinked.List 

The template is instantiated as follows: 

use template Structures.DoubleLinked.List for NewTypeName, RecordType 

Where NewTypeName is the new type name of the double linked list and RecordType is the record 

used in the linked list. The only condition for the record type is that it must have two pointer fields 

to the same type, named Previous and Next. 

type NewTypeName is record  

 

 RecordType.ptr Head   

 

 function Push(out RecordType R) 

 function Pop() out RecordType 

 function Remove(RecordType R) 

 function New out RecordType 

 

end 

The linked list is a record type with one field, the pointer to the first record in the list, and four 

methods. 

7.1.6 List.Push( RecordType ) 

description Adds a record at the start of the list 

input RecordType: the record to push on the list 

output - 

remarks - 

example - 

7.1.7 List.Pop() 

description Take the first record from the list 

input - 

output The pointer to the first record from the list 

remarks The record is not deleted 

example - 



7.1.8 List.Remove( RecordType ) 

description Removes the record from the list 

input RecordType: the record to remove 

output - 

remarks The record is not deleted. 

example List.Remove( P )  

7.1.9 List.New() 

description Returns a new record. 

input - 

output RecordType 

remarks - 

example - 



7.2 Hash Table 

The hash table structure allows to create a table of records that can easily be retrieved based on the 

content of a string field, for example a name. In order to store a record a key is calculated from the 

string field, the hash key, and that key is used to store and retrieve the field from a structure of 

tables. 

The hash table in the structures library is a template where a number of items have to passed when 

the template is instantiated. 

template HashTable for NewType, Type, Field, Size  

• NewType  is the name for the newly created hash table type 

• Type is the type of the record that is to be stored in the hash table 

• Field is the name of the string field in the record that will be used to calculate the hash key 

• Size is the size in bits of the hash key 

When the type has been created, it has to be initialized once by calling the method init(). The init 

method will create a table of 2^size entries (e.g if the hash key is 8 bits the table size is 256).  

Because a hash key is often not unique, the hash table will create additional tables for ‘backstore’ as 

required. The type has the following methods that can be used: 

type NewType is record  

 function Add(utf8 Text) out Type 

 function Find(utf8 Text) out Type  

end 

7.2.1 HasTable.Add(utf8 String) out Type 

description adds a new record to the hash table  

input The key-string 

output The pointer to the record in the table 

remarks if a record with the same key-string is already in the table, the function 
returns null 

example - 

7.2.2 HashTable.Find(utf8 String) out Type 

description returns the record that corresponds with the key-string 

input the key-string 

output Pointer to the record 

remarks If a record with that key-string does not exist, the function returns null 



example - 



8 File handling 

The file handling library contains a list of functions to read and write files from a local file system. 



8.1 Overview 

group System.File 

 

-- System.File.Record - use this if you need to open a file that you need to 

access multiple times. 

type Record is record  

 

 FileClass  WinFile 

   

 function Open(utf8 Name, utf8 Mode) out bool 

 function Close 

 function GetSize out int 

 function Read(out byte[] Data ) out int 

 function Read(word Max) out byte[] 

 function Read out byte[] 

 function Write(byte[] Data) out bool 

 

end 

 

-- The following functions allow to read or write a file in one go (open read 

close in one function)  

function Read(utf8 Name, word Max) out (int Error, byte[] Data) 

function Read(utf8 Name) out (int Error, byte[] Data) 

function Write(utf8 Name, byte[] Data) out (int Error) 

 

group System.Directory 

 

function GetFileList(utf8 Directory) out utf8[] 



9 Windows Library 

The windows library contains the functions and datatypes that are closely linked to the services 

offered by the OS. The library imports a C library that contains the classes that can be used in 

directly in CellSpeak or around which new CellSpeak types can be built. 



9.1 Overview 

The group Windows imports four C++ classes 

group Windows is WindowsLib 

 

lib class BasicWindowClass   

lib class CanvasWindowClass extends BasicWindowClass  

lib class ClockClass 

lib class FileClass   


